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Abstract 0 In the formulation of compartment models for de- 
scribing biological phenomena, two separate approaches have 
usually been employed for isotope dilution systems and systems for 
which no tracers are introduced. In the former, steady state is 
assumed to exist and small perturbations are introduced for solution 
of the system. In the latter, sets of simultaneous differential equa- 
tions are solved for the complete time course of the drug kinetic 
system. For linear systems which can be described by first-order 
kinetics, it is shown that the isotope dilution problem can be cast 
into the more general approach of simultaneous linear differential 
equations and the restriction of steady state removed. Solutions to 
these equations are shown to be easily obtainable using the state- 
space approach. For systems in which linearity cannot be assumed, 
digital computer techniques are presented which greatly facilitate 
numerical solutions. These concepts are demonstrated with two 
examples. A third example shows how these concepts and others 
can be employed with isotope dilution to find the initial pool sizes 
and rate constants in a six-compartment system. 
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The use of mathematical descriptions called models 
that seek to capture the essence of biological phenomena 
has been emerging over the last 20 years. These 
concepts have been widely reported in the literature from 
a general and theoretical point of view, as well as in 
relation to specific applications. Most frequently, some 
form of dynamic behavior has been of concern so that 
the areas of pharmacokinetics and radioactive tracers 
have been the major contributors of applications. From 
these sources two points of view have arisen. One is 
concerned with the dynamics of a system described by a 
set of differential equations and seeks to evaluate the 
time course of the substance as a steady state is ap- 
proached. The other presumes that steady state exists 
and that small perturbations about this value are in- 
troduced in order to  evaluate flow rates, dilution, etc. 
These two points of view have placed emphasis on 
different variables, and the formulation of the descrip- 
tions of the system behavior in terms of these different 
variables has given the appearance of different computa- 
tional requirements. It will be shown for first-order 
systems that these differences are superficial and that 
new advances in computer algorithms and computing 
languages now provide conveniences not generally 
recognized or utilized in biological modeling. 

COMPUTATION FOR COMPARTMENT MODELS 

The observable behavior of the distribution, absorption, or 
elimination of drugs has led to the concept that a biological system 

can be treated as if there were boundaries called “compartments” 
which separate the system into parts and that the drug or other 
material is transferred from one compartment to another in con- 
formance with first-order kinetics. This assumes that the rate of 
change of material is proportional to the amount of material that is 
present in the compartment. The application of Fick‘s law in the 
case of diffusion can lead to similar sets of linear first-order differ- 
ential equations. Although the assumption of first-order kinetics, 
linearity, and rate coefficients that are constants is clearly a gross 
approximation of a complex biological phenomenon, the approach 
has proved beneficial in numerous instances when it is utilized with 
discretion and understanding. The assumptions are so widely ac- 
cepted that one textbook (1) states: “Most drugs disappear from 
the body in this fashion.” 

The use of mathematical models as an aid to the better under- 
standing of biological phenomena requires that some form of com- 
putation be executed. While there have been advances from time to 
time in the conceptual features of modeling, little attention seems to 
have been paid to keeping the computational procedures up-to-date 
and to making the techniques more attractive to the biological 
researchers who could take advantage of modeling as a tool. Basic 
to a dynamic model is the solution of a set of differential equations. 
This job has been variously relegated to the analog computer or the 
digital computer. The work that has been assigned to the digital 
computer has been that of solving the equations by the techniques of 
numerical integration, the computation of statistical parameters, or 
perhaps some curve fitting. Most laboratories seem to have devel- 
oped their own libraries of programs associated with modeling and, 
except for utilizing some common language such as FORTRAN,they 
appear to have overlooked the availability of general-purpose pro- 
grams such as CSMP (Continuous System Modeling Program) (2). 
It is hoped that this paper will suggest some new approaches to 
meeting the computational requirements of modeling and thus re- 
duce the effort required in the utilization of models for biological 
systems. 

The recent emergence of the ideas of organizing the description of 
systems characterized by sets of first-order differential equations 
under the heading of “state space” has fostered the development of 
algorithms (3) which provide analytical solutions. The user is not 
required to manipulate matrices or to use the Laplace transform. 
The algorithms may be programmed for digital computers and thus 
provide the proper analytical form and the associated coefficients in 
a more convenient fashion than most other methods. This is also 
the form most familiar to those applying compartment theory, and 
the approach should therefore have appeal to anyone interested in 
biological dynamics. The use of the state-space formulation of the 
equations has the added advantages that it identifies the basic as- 
sumptions of linearity and clarifies the use of superposition. The 
state-space method yields solutions in functional form which gives 
the opportunity of locating maxima by differentiation and permits 
comparisons in terms of time constants. When comparing the func- 
tional solutions with experimental data points, one need only evaluate 
the function at the specific points in question. All other points need 
not be computed. An analog computer or numerical integration tech- 
nique would continuously evaluate the complete range of the soh- 
tion. There is the disadvantage, however, that when the system pa- 
rameters are altered, an entirely new state-space solution must be 
executed, but corresponding disadvantages are present in obtaining 
the solutions of numerical integration procedures. Thus there are 
trade-offs in the computational aspects of modeling, and it is desir- 
able to have alternative techniques available so that one may select 
the tool that is most appropriate for the requirements. An analog 
computer run generates a continuous solution in the desired range. 
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The analog computer is convenient for use in matching models to  
data when the number of parameters to be changed is small, say 
five or less. However, to evaluate a single point, the analog computer 
must compute a continuous solution at least to the desired point. 
Digital programs such as CSMP to be illustrated here have been 
written to simulate the operation of the analog computer. They are 
in fact conveniently packaged numerical integration routines with 
the ability to be interspersed with FORTRAN statements. With this 
program, one may run successive cases and make decisions auto- 
matically at the end of each case for purposes of optimization or 
curve fitting. Good initial estimates of system parameters will re- 
duce the number of successive runs required. These analog simula- 
tors usually incorporate nonlinear components and thus provide a 
convenient way of solving nonlinear differential equations without 
special programming. Here again the solutions are in the form of 
tables of values or digitally plotted curves rather than explicit func- 
tions of the independent parameter. Evaluation of specific data 
points requires computation of all previous points. As a means of 
illustrating the use of CSMP and later the state-space approach, a 
problem which has been published (4) in a nonlinear formulation 
requiring extensive special programming will be reviewed. However, 
the ramifications of the method go far beyond this particular ap- 
plication. 

The usual problem in drug dynamics seeks to evaluate the time 
course of the amount of drug in the various compartments of in- 
terest. The initial conditions are usually assumed to be zero except 
in the compartment into which the drug is introduced. The resulting 
formulation is a dynamic system with the drug being distributed 
among the compartments and perhaps being eliminated from the 
system at several points. The conditions of steady state may not be 
of particular interest because steady state could be the condition in 
which all the drug has been cleared from the system. The length of 
time for the system to reach steady state may be prohibitively long 
for clinical verification. The point of interest may well be the early 
rates of the dynamic behavior, and there may be little concern with 
the final conditions of steady state. 

In the case of the mathematical description of phenomena in 
which radioactive tracers are of interest, the emphasis has been on 
the small variations from an existing steady state. In fact an effort 
is made not to disturb the steady state appreciably. This concept of 
steady state in a biological system does not mean that there is no 
exchange of material among the compartments, but rather that the 
amount transferred into a compartment in a given unit of time is 
exactly the same as the amount which leaves the compartment in 
the given unit of time. Thus there can be a flow of material in the 
system, and the point of interest is in establishing the flow rates 
or pool sizes through dilution measurements. Radioactive tracers are 
suited to this task because they are not distinguishable by the body 
from the parent substance. Tracers may be injected in small enough 
quantities so as not to upset the equilibrium conditions and yet in 
sufficient amount so as to be measurable. The usual measurement is 
that of specific activity. Therefore, it was a natural approach to 
formulate the description in these well-known terms. The equations 
have been published (4) before and are of the general form: 

j+ i  

where a, = specific activity, p i j  = flow constant, and Si = com- 
partment size (amount of parent substance). 

This formulation is most convenient when the conditions of 
steady state are met. However, when one wishes to investigate the 
behavior in nonsteady state, it requires that the equations be viewed 
as having time-varying coefficients. A solution which leads to a form 
of the generalized Riccati-type equation can be found in the refer- 
ence given. The solution was re-presented by Rescigno and Segre 
( 5 ) .  The system solved in these references was a three-compartment 
closed system. The flow constants were assumed fixed with the ex- 
ception of one which was specified as a function of time, 

The general form of these equations can be derived from the 
equations that describe the same system with first-order kinetics (see 
Appendix I ) .  The specific activity parameter is introduced by defining 
specific activity as a = R/S,  differentiating and substituting for the 
derivatives of R and S in the equations. Here R is the amount of 
radioactivity and S is the amount of parent substance. If S is as- 
sumed to be constant, it can be associated with the first-order rate 

constant to give a new coefficient p.  However, if S changes with time 
and the newcoefficients p are specified as constants, as in the example 
referred to, one is forced to allow the normally fixed-rate constant 
to vary. It is not clear what physical reality was intended to be 
represented in the example problem. Nevertheless, assume that a 
problem of this form is to be solved and its biological justification 
has been established. For the three-compartment closed system the 
equations for nonsteady state, when written in terms of specific 
activity, take the form: 

where S, = amount of parent substance, a, = specific activity, and 
p i j  = flow coefficients. 

If some of the p's are functions of time, it is necessary to carry out 
the simultaneous solution of these six differential equations. Any 
suitable numerical integration algorithm may be used. However, the 
Continuous System Modeling Program is typical of the family of 
similar programs available for such solutions. The program shown 
in Appendix 2 is all that is required to solve this problem. Problems 
of much greater complexity can be solved in the same fashion and 
require a minimum of effort or programming skill. 

The formulation of the three-compartment closed system, when 
applied to a system with first-order kinetics, really Falls into the 
more usual category of the nonsteady-state linear systems. Since in 
such systems the theorem of superposition is applicable, one may 
solve the equations for the behavior of the parent substance S ,  
followed by the solution for the activity R. The division of the curve 
for R by that for S gives a curve of specific activity as a function of 
time. No assumption of steady state need be made in the formula- 
tion. The origins of the two curves which are to be divided may be 
offset relative to each other. That is to say, the system may be ini- 
tially loaded with the unlabeled species so that all compartments 
have initial conditions or finite pool sizes at the time the radioactive 
tracer is introduced. In fact there may be little interest in how the 
system got to the condition which prevailed at the time of the 
introduction of the tracer. The subsequent values of specific activity 
are the important considerations. A complete example of a two- 
compartment closed model is carried out in the state-space form in 
Appendix 3. Note that the solution is in the form of a function of 
exponential terms. If the rate constants are known, they can be 
combined into numerical coefficients. Computer solutions of the 
state-space matrix A ,  of course, require numerical values. 

It commonly occurs that the rate constants of the system are not 
known and that an experiment must be conducted to evaluate these 
constants. Many papers have treated the problem of curve fitting of 
assumed functions or the iterative searching for unknown parani- 
eters. One of the basic uses of the tracer method is that of establish- 
ing pool size through the technique of introducing tracers and then 
computing the pool size from the dilution indicated by the specific 
activity. This is easily done in a single compartment or more com- 
plicated system, if the rate constants are known or where extensive 
measurements can be made. Unfortunately, in many systems some 
rate constants may be unknown or certain internal compartments 
are not accessible for measurement. The accompanying model con- 
sidered in Appendix 4 is one in which it was desired to establish the 
pool size existing at the time of the introduction of the tracer and 
none of the rate constants was known. The approach was one that 
could be of benefit in most drug metabolism studies. A model was 
established based on the best judgment of what might be appropriate 
and an analytical solution was derived. The state-space numerical 
solution would have yielded the final exponential form if rate con- 
stant values were given. Nevertheless, here it was desirable to identify 
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the terms of each coefficient comprising the final solution form, and 
a complete derivation was made. The derivation developed showed 
that it would be possible to determine the desired quantities from 
clinical test data. Then to demonstrate that the procedure was feasi- 
ble, a simulation of the model using assumed parameters was run 
and data were taken on the model which corresponded to the clin- 
ical data expected from the actual experiment. Then from these data 
the pool size and rate constants were evaluated and shown to agree 
with the assumed values. One, of course, is not assured that the 
model is a unique representation of the biological phenomena, but 
if the experimental data indicates that the model is acceptable, then 
the parameters can be evaluated. Thus, in this fashion one can be 
assured that an experiment is feasible and that it will yield the de- 
sired parameters. Additional knowledge was gained regarding the 
requirements for data collection in the clinical experiment, the sen- 
sitivity of the parameters in the model was determined, and the 
general level of confidence regarding the experiment was raised. 

While there is no completely general approach to this kind of 
modeling, this example utilizes relationships that might be over- 
looked in some situations. Rate constants were separated, based on 
the final value of the compartment measurements, and the use of a 
derivative of the analytical form of the solution yielded a transcen- 
dental equation that gave the sum of two rate constants. The fortui- 
tous circumstances inherent in this model were that there was an 
output compartment directly linked to the input compartment and 
the fact that the parent drug could be assayed as well as the specific 
activity measured. 

CONCLUSIONS 

These considerations have shown that it is not necessary to formu- 
late the tracer kinetics for systems governed by first-order linear 
differential equations in the form of nonlinear equations in order to 
evaluate the nonsteady-state behavior in terms of specific activity. 
The solutions may be obtained routinely through the use of the state- 
space formulation for the separate evaluations of the parent sub- 
stance and the radioactive tracer, followed by a division of the curves 
or data points if specific activity is desired. Furthermore, if the case 
for nonlinear formulation of nonsteady-state conditions is justified 
on some biological grounds, the solution can be conveniently ob- 
tained through the use of a continuous system modeling program 
such as CSMP which provides a numerical integration algorithm 
and suitable selection of nonlinear elements. The model in Appendix 
4 ,  chosen to exhibit the procedures mentioned above, also exhibited 
other important features. Through the use of final value and curve 
fitting or solution of transcendental equations, the initial pool size 
was evaluated in a model of three internal compartments. The usual 
model in which dilution techniques are used through the measure- 
ment of specific activity to evaluate pool size consists of a single 
internal compartment linked to an external excretory compartment. 
An interesting problem exists in the extension of this approach to 
more complex systems. 

It is to be noted that the formalism of postulating a model, as- 
suming parameters, and executing trial runs to produce simulated 
clinical data, followed by the use of the data to check the previously 
assumed parameters, provides an assurance that the entire process 
is well defined. In this fashion the requirements for data collection 
and processing may be set forth well in advance of the clinical phase 
of the experimentation. 

APPENDIX 1 

For an n-compartment, closed, first-order system, one can write 

or 

I # %  

where K,, is the rate constant with units hours-’ for the transfer of 
substances S from compartment j to compartment i. S, is the total 
amount of substance in compartment i with units of moles. 

= 0.5 

p j ,  = 1.0 pi2 = 1.0 

Scheme I-Three-compartment system. 

One can write similar equations for the activity Ri of compartment 
i since the body will process labeled and unlabeled material in like 
manner. R has units of counts per minute. 

ei = 5 K t j R j  - Kj,Ri i = 1 , 2 , .  . . , n  
dt j,= 1 

3 f i  

Specific activity ai of compartment i is defined as 

Differentiating, 

Substituting for the derivatives of Ri and Si results in 

Sj- da. = K , j S j ( ~ j  - a,) 
dt 3 = 1  

j#i 

If one defines p i j  = KijSj as a flow variable with variability due to 
S j  and not the rate constant Kij, 

If steady-state conditions exist, all S’s will be constant and p be- 
comes a constant. 

APPENDIX 2 

For the system in Scheme I with the substances Si at steady state, 
it is desired to find the specific activities a; of each compartment after 
injecting one unit of labeled material into Compartment 1 at t = 0. 
One cannot resort to known general solutions of linear differential 
equations (see Appendix 3) because the flow “constant” p23 = 1 - 
5t makes the differential equations which describe the system have 
time-varying coefficients. For the system in Scheme I ,  one can write 
for the specific activities: 
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where So is a constant column vector 

[%I 
of initial conditions. The matrix eAt is defined as DA 1 =(R 12*(A2 -A 1) + R13* (A3 - A  l))/S 1 

DA2= (R21*(A1- A2)+R23*(A3 - A2))/S2 
DA3 = (R3 l*(Al- A3)+R32*(A2- A3))/S3 
DSl=O. 
DS2=-  .5-5.*TIME 
DS3= .5+5.*TIME 

S1 =INTGRL(: 5 ,bSl ) ’  
S2 = INTGRL( . 2 ,  DS2) 
S3 = INTGRL( .3 ,  DS3) 

TIMEROUTDEL= .Ol,FINTIM= .2,DELT= .OOOl 
PRTPLT A1(0., 1 .  ,S1) 
PRTPLT A210.. 1 .  . S2) 
PRTPLT A ~ ( o .  1 . ; s3 j 
END 
STOP 

Figure 1-CSMPprogram. 

where pas is time varying. 
For the substance Si in each compartment the equations are: 

The six equations shown can be solved simultaneously in a straight- 
forward manner with numerical techniques by using a digital com- 
puter language such as CSMP which simulates an analog computer. 
The simple CSMP program required to solve the above equations is 
shown in Fig. 1. Integration is performed by using the CSMP func- 
tion “INTGRL(IC,X)”, where IC is the initial condition and X is the 
function to be integrated. The functions to be integrated such as 
dalldt, which is shown in DAl in Fig. 1 ,  are defined by FORTRAN 
IV statements and/or with other CSMP functions. Plots of functions 
may be called for as well as function values at discrete points. 
Results of the above example are shown in Figs. 2-4. It is important 
to note that the above approach makes solutions easily obtainable 
for a large class of problems. The assumption of steady state, for in- 
stance, could be removed and add little complexity to the CSMP 
program. 

APPENDIX 3 

Consider a two-compartment, closed, first-order system with in- 
itial conditions Sl(0) and &(O): 

As in Appendix I ,  one can write: 

or in matrix form 

which may be written as 

. f = A S  
These equations are in the form of the canonical state equations for 
which solutions are well known (3). The solution is 

= ,Atso 

where f is an n X It identitymatrix and K is an n X n constant matrix, 
which, for this example, are rate constants as in Eq. 2. 

All that is ngcessary for a complete analytical solution to Eq. 1 
is evaluating eA t. Several methods suited to computer implementa- 
tion exist in the literature (3), but the method of Laplace transforms 
will be used here for convenience. It can be shown (3) that e A t  is 
the inverse Laplace transform of the matrix 

[d - 4 - 1  

where s is the Laplace variable and 
write 

is the identity matrix. One can 

- Kzi s + - Ki21 Kiz [sl - A] = s 

Now, 

- 1 (S + K I Z )  Kl2 
4 s  + K I ~  + Kzi) 4s + KIZ + K d  [ KZI (S + KzJ 

[sl - 21-1 = 

S(S + Kiz + Kzi) ds + K12 + Kzi) 

by normal methods. Taking the inverse Laplace transform yields] 

~ - l ( [ s f  - 21-1) = ,At 

=p- I 

Thus the solutions for Eq. 2 can be written as 

or 

K1z  e- (K 1 2 + K d  t ]  
~ + KIZ + KZI KIZ + Kzi 

1 A matrix of the type 

r; !I 
is written as 

[ai :] 
because of format restrictions. 
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MINIMUM A1 VERSUS TIME MAXIMUM 
0.0 1.0000E 00 

MINIMUM 

TIME A2 I 
0 . 0  0.0 + 

0.0 
A2 

A3 MINIMUM 

TIME A3 I 
0.0 0.0 + 
1. oooOE-02 3.1908E-02 -+ 
2.0000E-02 6.11 43E-02 ---+ 
3.0000E-02 8.7954E-02 ----+ 
4. oooOE-02 1.1258E-01 -----+ + 5.0000E-02 1.3522E-01 - - - - - -  + 6. 0000E-02 1.5607E-01 - - - - - - - 

-t 7.0000E-02 1.7531E-01 - - - - - - - - + 8.0000E-02 1.9310E-01 - _ - - _ _ - - -  + 9.0000E-02 2.0959E-01 _ _ _ _ _ _ _ _ - _  + l.oooOE-01 2.2491E-01 - - _ - - - _ - - - -  + 1.1000E-01 2.3918E-01 - - _ _ _ - - - - - -  + 1 .2000E-01 2.5252E-01 _ _ _ _ _ _ _ _ - _ _ _  + 1 .3000E-01 2.6504E-01 _ _ _ _ _ _ _ _ - _ _ _  + 1.4000E-01 2.7684E-01 _ _ _ _ _ _ _ - - - _ _ _  + 1.5000E-01 2.8802E-01 - _ _ - - - - - - _ - _ _ -  + I 1.6000E-01 2.9868E-01 - _ _ _ _ _ - - - _ - _ _ _  + 1 .7OOOE-01 3.0893E-01 _ _ _ _ _ _ _ - - _ _ _ _ _ _  + 1 ,8000E-01 3.1891E-01 + 1.9MxIE-01 3.2883E-01 + 2. oooOE-01 3.3933E-01 - _ - - _ _ _ - - _ - _ - _ _ _  

0.0 

- _ - - - - - - - - - _ - - -  - _ _ _ _ _ _ _ - _ - _ _ _ _ _  

Figure 4-as(t) from CSMP program. 

51 
5.0000E-01 
5. oooOE-01 
5.oooOE-01 

5. 0000E-01 
5.oooOE-01 
5.0000E-01 
5.oooOE-01 
5. oooOE-01 
5.oooOE-01 
5. 0000E-01 
5.0000E-01 
5 . 0 E - 0 1  
5.oooOE-01 
5 .  oooOE-01 
5. oooOE-01 

5 .oooOE-01 
5, oooOE-01 
5. 0000E-01 
5.oooOE-01 

5. oooOE-01 

5. oooOE-01 

1 ,8899E-01 
1.8274E-01 
1.7599E-01 
1.6874E-01 

1.5273E-01 
1.4398E-01 
1.3473E-01 
1.2497E-01 
1.1472E-01 
1.0397E-01 

1 .6098E-01 

9.271 6E-02 . 

8.O964E-62 
6.871 1E-02 
5.5960E-02 
4.2710E-02 
2.8960E-02 
1 ,4709E-02 

-4.0663E-05 

VERSUS TIME MAXIMUM 
1.oooOE 00 

I 53 
3.oooOE-01 
3.0525E-01 
3.1099E-01 
3.1724E-01 
3.2399E-01 
3.3123E-01 
3.3898E-01 
3.4723E-01 
3.5598E-01 
31 6522E-01 
3.7497E-01 
3.8522E-01 
3.9596E-01 
4.0721E-01 
4.1896E-01 
4.3120E-01 
4.4395E-01 
4.5720E-01 
4.7095E-01 
4.8519E-03 
4.9994E-01 
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If one does not know Si(0) and Sz(0) but knows them at some 
time, ti, earlier [e.g., 100 mg. of substance was injected into Com- 
partment 1 with no initial substance in the system, then .SI(~I) = 100 
and SZ(t1) = 01, one can use the above solutions with different 
initial conditions and evaluate at the later time which has been 
defined as zero to obtain S1(0) and Ss(0). 

If labeled substance is now injected into the system at t = 0, it 
is possible to write for the activities, as in Appendi.v I ,  

= K12Rs - KZ1R1 dt 

dRz -;i7 = KZIRI - K12R2 

The solutions to the above follow in the same manner as for the 
unlabeled substance Sl, i.e., 

The above solutions could be obtained by other methods, but the 
state-space method has the advantage of being easily relegated to a 
computer. One can now obtain a complete analytical solution for 
the specific activities simply by dividing: 

and 

az = 

Note that the amount of radioactive drug injected must be added to 
Sl(0) and S2(0) since S is defined as the total amount of drug 
present. Also note that the second term in the numerator of the ui is 
zero if the labeled material is injected into Compartment 1 only, as 
is the usual case. 

APPENDIX 4 

In the following first-order compartment model each compartment 
contains an initial condition at time t = 0. Measurements are pos- 
sible for Compartments 4, 5,  and 6 only, and hence the initial con- 
ditions of Compartments 1, 2, and 3 are unknown. Also, all rate 
constants are unknown. It will be shown that all of the un- 
knowns may be uniquely determined by using the method of isotope 
dilution. 

K,, , 

One can write 

dsz = K21S1 - (K32 + KSZ)SZ dt 

The solutions to the above three equations are 
S1 = Sl(0)e-(Kzl+K41)t 

e - ( K  32fK6Z)  t + (Km - K32 - K52) (K41 + KZI - K32 - Ksz) 
e-(K4l+KZI)t 

(K63 - Ka - KZI) (Ka  + K32 - Ka - KZI)  

The above three equations describe the time dependency of mass. 
Suppose an amount of labeled material is injected into Compart- 

ment I at t = 0. One can write rate equations for the amount of 
activity in each compartment as: 

dt = - (K41 + KzJRI 

The solutions to the activity equations above are of the same form as 
the mass equation solutions except that no initial conditions of 
activity exist on any compartments except 1.  Thus the solutions are 

R1 = R1(0)e-(~21+K41)t 

Now if specific activity is defined as 
R 
S 

a = -  

one has for Compartment 1 
R1 R1(0) e-(K41fKz1)6 

S1 &(O) e- (K,I+Kzl ) t  
a l = - =  

which is a constant. K4& and K4]R1 can be measured so that 
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can be determined. Since RI(0) and al are known, 

which is one of the unknowns to be determined. Note that one must 
subtract that amount of labeled substance introduced from the 
above value. 
In addition it is possible now also to evaluate K41 from 

KaiSdO) 
Sl(0) 

K41 = -__ 

KZl may be determined from a curve fitting of the K41S1 data with 
K41 as the only unknown. KZ1 could also be determined from the 
final values of Compartments 4,5, and 6, i.e., 

The sum (K32 + K j 2 )  can be found from a curve fit of the K52R2 data 
with the sum as the only unknown or by solving a transcendental 
equation derived as 

(Ka2 + Ka2) e-(K32+K~z)t) 

at the time T,,, Ks2R2 reaches its maximum and (dKezRZ/dr) = 0. 
Thus 

(K41 + KZ1) e-(Ka~fKz~)Trn = (Ks2 + K62) e-(x32+K62)Tm 

which is a transcendental equation which must be solved iteratively. 
All terms are known except the sum (K32 + K5$. 

The sum (Kr2 + Kan) may now be split into its parts by making use 
of the relationship 

&2 Sdm) - 
Kaz ss( m >  

and thus K5* and Ksz are determined explicitly. One can now deter- 

mine the unknown initial conditions, SZ(0). It is possible to measure 

Ks2S2 = K&?2(0)e-(K32+K52)[ + 

and thus at f = 0 one can be sure he is measuring Kj2S2(0) alone. 
Since KS2 is known, 

Only two unknowns remain for the system, S,(O) and KC3. can be 
found with a curve fit of the measured KmR3 data with K s ~  as the 
only unknown, or one can solve another transcendental equation 
derived in a manner similar to the first. 

From the K& data at t = 0, one can find K6&(0) in the same 
manner as Ks2S2(0) and hence 

Thus all unknowns have been uniquely determined. Two methods 
of evaluating several of the unknowns are possible and can be used 
as a check. 
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